Learning Bayesian Networks from Incomplete Data

نویسنده

  • Moninder Singh
چکیده

Much of the current research in learning Bayesian Networks fails to eeectively deal with missing data. Most of the methods assume that the data is complete, or make the data complete using fairly ad-hoc methods; other methods do deal with missing data but learn only the conditional probabilities, assuming that the structure is known. We present a principled approach to learn both the Bayesian network structure as well as the conditional probabilities from incomplete data. The proposed algorithm is an iterative method that uses a combination of Expectation-Maximization (EM) and Imputation techniques. Results are presented on synthetic data sets which show that the performance of the new algorithm is much better than ad-hoc methods for handling missing data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The modeling of body's immune system using Bayesian Networks

In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Study of Four Types of Learning Bayesian Networks Cases

As the combination of parameter learning and structure learning, learning Bayesian networks can also be examined, Parameter learning is estimation of the dependencies in the network. Structural learning is the estimation of the links of the network. In terms of whether the structure of the network is known and whether the variables are all observable, there are four types of learning Bayesian n...

متن کامل

Learning Bayesian networks from incomplete databases using a novel evolutionary algorithm

This paper proposes a novel method for learning Bayesian networks from incomplete databases in the presence of missing values, which combines an evolutionary algorithm with the traditional Expectation Maximization (EM) algorithm. A data completing procedure is presented for learning and evaluating the candidate networks. Moreover, a strategy is introduced to obtain better initial networks to fa...

متن کامل

Learning Bayesian Networks with Incomplete Data by Augmentation

We present new algorithms for learning Bayesian networks from data with missing values using a data augmentation approach. An exact Bayesian network learning algorithm is obtained by recasting the problem into a standard Bayesian network learning problem without missing data. As expected, the exact algorithm does not scale to large domains. We build on the exact method to create an approximate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997